التركيز والمحاليل الإلكتروليتية La concentration et Les solutions Eléctrolytiques

* يتكون الجسم الصلب الأيوني من أنيونات وكاتيونات مموضعة بانتظام في الفضاء.

* ينجدب كل أيون بالأيونات المحيطة به ذات الإشارة المقابلة, مما يضمن تماسك بلورات الجسم الصلب التي تكون متعادلة كهر بائيا.

* تكون رابطة بين ذرتين مستقطبة ، إذا كانت الذرتان مختلفتين .

* تكون جزئية قطبية, إذا كان مرجعًا الشحن الموجبة والشحن السالبة غير منطبقين.

* لكل من جزيئة الماء وجزيئة كلورور الهيدروجين خاصية ثنائية القطبية, وبالتالي فهما جزيئتان قطبيتان.

* نحصل على محلول الكتر وليتي٬ باذابة جسم صلب أيوني في الماء أو جسم جزيئي٬ جزيئاته قطبية . تسمى المحاليل التي تحتوي على أيونات ، محاليل الكتر وليتية .

$$NaCl(S) \xrightarrow{\text{lal}} Na^+_{(aq)} + Cl^-_{(aq)}$$

معادلة ذوبان كلورور الصوديوم في الماء:

$$HC1_{(g)} \xrightarrow{\text{Hal}} H^+_{(aq)} + (cl)^-_{(aq)}$$

معادلة ذوبان كلورور الهيدروجين في الماء:

$$H_2SO_4(1) \xrightarrow{} 2H_{(aq)}^+ + SO_{4(aq)}^{2-}$$

معادلة ذوبان حمض الكبر يتيك في الماء:

 $c\left(X
ight)$ ير مز للتركيز المولي للمذاب X المستعمل أو التركيز المولي لمحلول مائي ب $c\left(X
ight)$ ويحسب بالعلاقة:

X ير مز للتركيز المولي الفعلي للأيون X المتواجد فعليا في المحلول ب X ويحسب بالعلاقة:

 $:c_{m}\left(X
ight)$ لمذاب X وتركيزه الكتلي $c\left(X
ight)$ لمذاب X

تطىق:

كلورور الحديد II وكبريتات الحديد II , جسمان صلبان أيونيان, يحتوي كل منهما على الأيونات -Fe².

1- أعط الصيغتين الكيميائيتين لكبريتات الحديد [[وكلورور الجديد [], ثم رمز المحلول المائي لكل منهما.

. Fe $\left(NH_4\right)_2$, $\left(SO_4\right)_2$, $6H_2O\left(s\right)$. ملح –مو هر - جسم صلب أيوني مميه , صيغته: 2

3- حدد كمية كل نوع أيوني موجود في مول واحد من ملح موهر

4- ما التركيز المولي للمذاب عند تحضير 200ml من محلول مو هر, انطلاقا من 1,57g من المسحوق؟ 5- حدد كمية كل نوع أيوني موجود في محلول ملح مو هر المحصل, مع وضع جدول التقدم لتفاعل الذوبان (دون أخذ بعين الإعتبار كمية الماء الذي يظهر ضمن نواتج التفاعل).

تمارین

<u>تمرىن1:</u>

- $.C=0,02mol.L^{-1}$ نعتبر محلولا S لكلورور الألمنيوم $AlCl_3$ تركيزه المولي: -1
 - ما التركيز المولى الفعلى للأنواع الموجودة في المحلول الاج
- $[Cl^{-}] = 0,01$ سوي التركيز المولي الفعلي لأيونات الكلورور في محلول كلورور الزنك $[Cl^{-}] = 0,01$.
 - ما التركيز المولي الفعلي لأيونات الزنك في المحلول نفسه؟

<u>تمرىن2:</u>

- $_{1}4H_{2}O$ من محلول $_{2}V=50mL$ من محلول $_{3}V=50mL$ من كبريتات الألمنيوم المميه $_{2}V=50mL$ نحصل على حجم . $_{3}Al_{2}(SO_{4})_{3}$
 - 1- أحسب الكتلة المولية لكبريتات الألمنيوم المميه
 - 2- أحسب التركيز المولى الفعلى للنوع المذاب.
 - 3- أكتب معادلة الذوبان و استنتج التراكيب المولية الفعلية لللأيونات الناتجة عن هذا الذوبان

*:3:מגע*י

- 1- كيف يمكن التحقق من أنه يحتوى على أيونات؟
- 2- لتمييز الأيونات المتواجدة في هذا المحلول ننجز الروائز الكيميائية التالية. يعطى المحلول:
 - * راسبا ذا لون الصد بوجود أيونات الهيدر وكسيد
 - * راسبا أبيض بوجود أيونات الباريوم.
 - 3- أكتب معادلة ذوبان الجسم الصلب خلال تحضير المحلول.

<u>تمرىن4:</u>

- نمز ج حجما V=50mL من محلول S_1 لكبريتات الصوديوم تركيزه المولي: $C_1=0,02mol.L^{-1}$ وحجما V=50mL نمز ج حجما $V_2=150mL$ كبريتات الألمنيوم تركيزه المولى $V_2=150mL$
 - 1- أحسب التر اكبر المولية الفعلية للأنواع المتواجدة في الخليط.
 - 2- تأكد أن المحلول المحصل محايد كهربائيا.

<u>تمرين 5:</u>

- $CuSO_4(S)$, xH_2O كبريتات النحاس الامميه جسم صلب أبيض, عندما يتميه يصبح أزرق وصيغته الكيميائية
 - نحضر محلولا مائيا S حجمه V=100ml بإذابة m=10g من كبريتات النحاس المميه في الماء.
 - $[Cu^{2+}] = 0,4mol.L^1$ هو: S هو: الفعلي لأيونات النحاس في المحلول S هو: المحلول علم التركيز المولي الفعلي الأيونات النحاس في المحلول المحلول S

تمرين:6:

- S نذيب $Na_{2}CO_{3}(S)$ نذيب الصديوم اللامميه , صيغته $Na_{2}CO_{3}(S)$ نذيب $Na_{2}CO_{3}(S)$ نذيب الماء فنحصل على محلول على محلول
 - V = 250mL حجمه
 - 1- أحسب التراكيز المولية الفعلية للأنواع الناتجة عن ذوبان هذا المركب في الماء.
 - V=150mL حجما V=150mL من محلول مائي ' S لكلورور الصوديوم تركيزه الكثلى $L=11,7g.L^{-1}$ الكثلى .
 - ما التر اكبر المولية الفعلية للأبونات المتواجدة في الخليط؟